生成AI利用時の個人情報に関する3大リスクと取るべき対策6選
リリース以降、2ヶ月で1億ユーザーを突破したChatGPTの登場・普及をきっかけにますます注目が集まっている生成AI。多くの企業が業務効率化のための生成AI活用を進めています。
一方で、「生成AIを業務に活用したいけど、個人情報の流出リスクが不安で、なかなか導入に踏み切れない」という悩みを抱えている方も多いのではないでしょうか。
本記事では、そんな悩みを抱えている方に向けて、生成AI利用時の個人情報に関するリスクと対策について、わかりやすくご紹介します。
またAI総研では、AI活用を検討する上で押さえておきたい、AI・ChatGPTの最新活用事例50選の狙いや取り組みをまとめたレポートを無料で配布しています。ご興味のある方は、以下リンクからダウンロードしてご活用ください。
⇒AI・ChatGPT活用事例50選の資料ダウンロードはこちら(無料)
目次
生成AI利用時の個人情報に関する3大リスク
生成AI利用時の個人情報に関するリスクとして以下の3つが挙げられます。
- ①利用者本人の個人情報の流出
- ②顧客等の個人情報・機密情報の流出
- ③サイバー攻撃などによる個人情報・機密情報の流出
それぞれについてわかりやすく紹介していきます。
※生成AI/ChatGPTを導入する前に必ず押さえておきたい、主要なリスクと具体的な対策をまとめた資料をダウンロード頂けます。
⇒生成AI/ChatGPT導入のリスクと対策ガイドブックの資料ダウンロードはこちら(無料)
①利用者本人の個人情報の流出
生成AIを活用する際、プロンプトに利用者本人の個人情報を入力してしまうことで、当該個人情報が生成AIに学習され、流出してしまうリスクがあります。
自分の個人情報をどうしても入力しなければならないときは、生成AIにデータを学習させないようにするオプトアウト機能を有している生成AIツールを利用するなどの対策をとることが重要です。
オプトアウト機能はChatGPTにも搭載されており、詳細は以下の記事でわかりやすく紹介しています。
⇒ChatGPTのオプトアウト機能とは?情報漏洩を防ぐ設定方法を紹介
②顧客等の個人情報・機密情報の流出
生成AIのプロンプトに顧客や第三者の個人情報や企業の機密情報を入力し、それが流出してしまうと、単なる個人レベルの被害にとどまらず、企業に損害を生じさせたり、取引先からの信頼を失ったりするなど、大きなビジネストラブルに発展するリスクがあります。
このような場合にも、オプトアウト機能を利用することで、情報流出のリスクを回避することができます。
③サイバー攻撃などによる個人情報・機密情報の流出
生成AIならではの脆弱性を狙ったサイバー攻撃による個人情報・機密情報の流出も重要な問題です。
例えば、特定の企業の生成AIに対して悪質なデータを学習させ、誤ったアウトプット・挙動を引き起こす攻撃や、生成AIに対して特殊な質問をすることで、本来非公開の機密データを引き出す攻撃などが挙げられます。
生成AIを導入する際は、セキュリティを強化した環境を構築することが重要となります。
企業が生成AIのリスクに対して取るべき6つの対応策
企業が生成AIのリスクに対して取るべき代表的な対応策として以下の6つが挙げられます。
- ①最適な生成AI活用範囲の設定
- ②最適なAIツールの選定・導入
- ③リスクを最小化するデータマネジメント
- ④従業員向けの利用ルール・マニュアルの策定
- ⑤従業員の生成AI活用リテラシーの向上
- ⑥最新動向を踏まえた生成AI活用方法の定期的な見直し
それぞれについてわかりやすく紹介していきます。
※生成AI/ChatGPTの活用を検討する際に必ず押さえておきたい、基礎知識から活用の進め方、ポイントまでをまとめた資料をダウンロード頂けます。
⇒【ゼロから分かる】生成AI/ChatGPT活用ガイドブックの資料ダウンロードはこちら(無料)
①最適な生成AI活用範囲の設定
生成AIは全ての業務に対して万能という訳ではなく、明確に得意不得意が存在します。
そのため、生成AI活用の成果を最大化し、リスクを最小化するためには、活用する範囲を適切に設定することが極めて重要です。
これにより、不適切な情報生成や不意の法的問題の防止につながります。
②最適なAIツールの選定・導入
各企業の状況や目的に最適なAIツールの選定と導入は、安全かつ効率的なAI活用に向けて非常に重要です。
利用するAIツールは、その機能、性能、セキュリティ対策が自社の要求を満たしているかを評価し、適切なものを選ぶ必要があります。
さらに、AIツールの導入時も、ユーザーが入力した内容を学習させない「オプトアウト」を選択する等の対処を取ることで、自社のリスクを最小化することができます。
※生成AIツールの導入を検討される方に、おすすめの10大生成AIツールの特徴や選び方、活用方法をまとめた資料をダウンロード頂けます。
⇒10大生成AIツール徹底比較の資料ダウンロードはこちら(無料)
③リスクを最小化するデータマネジメント
生成AIは、入力されたデータに基づいて動作するため、データマネジメントの質がAIの出力品質に直結します。
データの正確性、偏りのなさ、機密性の保持は、リスクを最小化する上で極めて重要です。
適切なデータマネジメントの実施により、データの質を確保し、情報漏洩や不正確な情報生成のリスクを低減します。
④従業員向けの利用ルール・マニュアルの策定
生成AIの効果的な利用とリスクの最小化のためには、企業が従業員向けの明確な利用ルールやマニュアルを策定することが重要です。
具体的には、社内でのAIの使用目的、使用範囲、倫理ガイドライン、データ取り扱いのルール・マニュアルを策定する必要があります。
⑤従業員の生成AI活用リテラシーの向上
生成AIのポテンシャルを最大限に活用し、同時にリスクを管理するためには、従業員のAIに関する理解とスキル、すなわちAIリテラシーを向上させることが不可欠です。
研修プログラムや実践的なトレーニングを通じて、従業員が生成AIの基本的な知識、適切な使用方法、関連するリスクを理解してもらい、効率的かつ責任ある方法で使用できる環境を構築することが求められます。
⑥最新動向を踏まえた生成AI活用方法の定期的な見直し
生成AIの技術・サービスは日々進化しており、新たな活用方法や利用プロセスが登場し、それに応じて新たなリスクが生じる可能性が高いです。
したがって、国内外の生成AIに関する最新の動向を常に把握し、企業の生成AI活用方法を定期的に見直し、更新することが必要となります。
【2024年最新】生成AIによる問題事例5選
生成AIによる問題事例として以下の5つが挙げられます。
- ①サムスン:社内ソースコードが生成AI経由で外部に流出
- ②日本のChatGPTアカウント661件が闇取引市場で売買される
- ③香港の多国籍企業:ディープフェイクの同僚に騙され38億円送金
- ④ニューヨークタイムス:記事が学習されたとしてオープンAIを訴訟
- ⑤米国の作家:著作物を学習されたとしてオープンAIを訴訟
それぞれについてわかりやすく紹介していきます。
※200事例の分析に基づく、企業の生成AI/ChatGPT活用でよくある失敗とベストプラクティスをまとめた資料をダウンロード頂けます。
⇒生成AI/ChatGPT活用しくじり大全の資料ダウンロードはこちら(無料)
①サムスン:社内ソースコードが生成AI経由で外部に流出
生成AI活用による代表的な企業の情報漏洩事例として韓国サムスン電子での情報漏洩が挙げられます。
サムスン電子は、従業員によるChatGPTなどの生成人工知能(AI)ツールの利用を禁止する新ポリシーを策定しました。
これは、従業員がChatGPTにセンシティブなデータをアップロードし、誤って情報をリークさせた事例が発覚したためです。
詳細な内容は不明ですが、エンジニアが社内ソースコードをChatGPTにアップロードし、外部サーバーに保存されたデータが他のユーザーに開示されたことが背景にあるとされています。
新たなポリシーは、社内のコンピューターやタブレット、携帯電話、社内ネットワークでの生成AIシステムの使用を禁止し、個人所有の端末でChatGPTなどを利用する場合には、サムスンの知的財産や会社関連の情報、個人データを入力しないよう要求しています。
※これさえ読めば、ChatGPTの機能・できること・活用方法まで全てわかる、最新情報をまとめた資料をダウンロード頂けます。
⇒【5分でわかる】ChatGPT活用ガイドブックの資料ダウンロードはこちら(無料)
②日本のChatGPTアカウント661件が闇取引市場で売買される
シンガポールの情報セキュリティ会社Group-IBは、日本から対話型生成AI「ChatGPT」のログイン情報(IDとパスワード)が漏洩していると発表しました。
グループIBは、ウェブブラウザなどに保存された情報を盗み出すマルウェア「インフォスティーラー」によってこの漏洩を検知しました。
2023年5月までの1年間で、ChatGPTのアカウントがダークウェブの闇市場で取引されており、その中で少なくとも661件が日本からの漏洩であることが確認されています。
③香港の多国籍企業:ディープフェイクの同僚に騙され38億円送金
香港の多国籍企業の財務担当者が、AIで合成された同僚の姿を悪用したビデオ通話に騙され、約38億円を送金する事件が発生しました。
香港警察によると、担当者が参加したテレビ会議の映像と音声はいずれもAIを利用して合成・複製された偽物(ディープフェイク)だったとのことです。
この事件は、ディープフェイク技術を利用した初の大規模な詐欺として注目を集めています。
④ニューヨークタイムズ:記事が学習されたとしてオープンAIを訴訟
ニューヨーク・タイムズがオープンAIとマイクロソフトに対し、「数十億ドル」の損害賠償責任を求める形で訴訟を提起しました。
同紙は、インターネット上の膨大なデータを分析して「学習」するチャットGPTが、許可なく同紙の記事を利用し、購読料収入及び広告収入の機会を奪っていると主張。この訴訟は、AIの利用と著作権の保護という点で新たな議論を呼び起こしています。
⑤米国の作家:著作物を学習されたとしてオープンAIを訴訟
「ゲーム・オブ・スローンズ」の作者ジョージ・R・R・マーティン氏などの作家たちは、対話型AI「チャットGPT」が自身の著作権を侵害しているとして、その開発元であるオープンAIに対して訴訟を起こしました。
この訴訟では、チャットGPTが作家たちの許可なく著作物のデータを使用していることが問題視されています。
一方、オープンAIも、作家の権利を尊重していると説明。「作家らもAI技術から利益を得るべきだ」との考えを表明しており、今後の動向に注目が集まっています。
企業が生成AI活用を成功させるための5つのポイント
企業が生成AI活用を成功させるために抑えるべきポイントは以下の5つです。
- ①業務内容の棚卸しと活用インパクトの試算
- ②投資対効果の高い課題/目的と活用方法の選定
- ③アジャイルアプローチでの開発・導入
- ④システムとルールの両面からのリスク管理
- ⑤研修等での社員のAI活用リテラシーの向上
それぞれについてわかりやすく紹介していきます。
※200事例の分析に基づく、企業の生成AI/ChatGPT活用方法の9つの定石と最新事例をまとめた資料をダウンロード頂けます。
⇒生成AI/ChatGPTの活用アイデア集の資料ダウンロードはこちら(無料)
①業務内容の棚卸しと活用インパクトの試算
生成AI活用の成否を分ける最大のポイントは、生成AIを活用する意義の大きな業務に対して活用することに尽きます。
活用の方針や戦略がないまま活用を進めるのではなく、自社の業務内容・フローをしっかりと棚卸しした上で、どの程度業務効率やアウトプット向上に繋がるかを試算することが重要となります。
②投資対効果の高い課題/目的と活用方法の選定
生成AIは全ての業務に対して万能という訳ではなく、膨大なデータに基づいたコンテンツ制作は得意だが、複雑な問いに対して正確な答えを出すのは苦手といった、明確な得意不得意が存在します。
そのため、自社の業務の現状や生成AIの特徴を踏まえた上で、どのような課題/目的に対して、どのようなアプローチ/範囲/ツールで活用を進めるかを、検討・選定するステップがプロジェクトの投資対効果を左右する、極めて重要なプロセスとなります。
③アジャイルアプローチでの開発・導入
生成AIは、一度開発・導入して終わりという進め方ではなく、何度もモデル・学習データ・利用方法等を細かくカスタマイズしなおすことで、より理想とする活用を実現することができます。
具体的には、初期仮説に基づいた簡易的なプロトタイプを構築し実際に利用してみる、というサイクルを、1サイクル数週間の期間で何度も繰り返し、ブラッシュアップしていくという、アジャイル開発のアプローチを取ることが適しています。
④システムとルールの両面からのリスク管理
企業が生成AIの活用に踏み切れない最大の理由として、機密情報漏洩や著作権侵害などのリスクへの懸念が挙げられます。
確かに、社員に特段ルールを設けず、一般に公開されている生成AIを活用させた場合、様々な問題が発生する可能性は存在します。
一方で、入力するデータが学習されないようなシステム構築や使用範囲・機密情報の取扱等の運用ルールの策定により、リスクをマネジメントし最小化することが可能です。
⑤研修等での社員のAI活用リテラシーの向上
生成AIの特徴として、AIとの対話によってアウトプットを引き出すことが求められるため、使い手のリテラシーによって成果が大きく左右されることが挙げられます。
そのため、生成AIのポテンシャルを最大限に活用するためには、従業員のAIに対する理解とスキル、すなわちAIリテラシーを向上させることが不可欠です。
研修プログラムや実践的なトレーニングを通じて、従業員が生成AIの基本的な知識、適切な使用方法、関連するリスクを理解してもらい、効率的かつ責任ある方法で使用できる環境の構築が必要となります。
企業が生成AIを導入するための4つのステップ
企業が生成AI導入を進めるための流れとして、以下の4つのステップがあげられます。
<Step1:活用方針の検討>
- 最新の市場動向のキャッチアップ
- 自社の活用可能性の整理
- 生成AIの活用目的・ゴールの設定
<Step2:利用環境構築>
- セキュリティ・データ管理体制の強化
- ガイドライン・マニュアルの策定
- 社員向けのAIリテラシー研修
- 社内業務での試験運用
<Step3:試験開発・運用(PoC)>
- PoCを行うユースケースの検討
- 要件定義・プロトタイプ開発
- 運用と評価
<Step4:本開発>
- 本開発を行うユースケースの検討
- 要件定義・本開発
- 運用と評価
- 活用方針・内容の継続的なカイゼン
それぞれについてわかりやすく紹介していきます。
※生成AI/ChatGPTを導入する前に必ず押さえておきたい、基礎知識や導入方法3パターンの比較、リスクと対策などをまとめた資料をダウンロード頂けます。
⇒生成AI/ChatGPT導入マニュアルの資料ダウンロードはこちら(無料)
Step1:活用方針の検討
1つ目のステップは、自社として生成AIをどのように活用していくかの大方針の検討です。
生成AIは社内業務効率化や顧客体験の向上、新規事業創出など様々な目的で活用が可能だからこそ、自社の課題にマッチした目的とユースケースで活用することが、投資対効果を大きく左右します。
最新の技術や競合の動向をキャッチアップした上で、自社の活用可能性の幅出し・整理を行います。その上で、生成AIをどのような領域で、どの程度ダイナミックに活用していくかの目的やゴールを初期的に設定しましょう。
Step2:利用環境構築
2つ目のステップは、生成AIを安全かつ効率的に活用できる、社内のシステムやルールなどの利用環境の構築です。
企業が生成AI活用に踏み切れない理由として、機密情報漏洩などのセキュリティリスクの懸念が挙げられますが、適切なシステム設計・データ管理やガイドラインの策定などを行うことで、それらのリスクに対処しながら、業務効率化に繋げることが可能です。
社員に対し、生成AIをリサーチや文書作成などの日常的な業務に安心して活用できる環境を提供することで、自社のどのような業務と生成AIの相性が良いのかという現場からの示唆を得ることができ、プロトタイプ・本開発の企画への重要なインプットとなります。
Step3:試験開発・運用(PoC)
3つ目のステップは、自社にマッチするユースケースの検証に向けた、プロトタイプの開発と運用です。
顧客対応支援や社内のナレッジ検索、新機能・サービスの実装などの生成AIの幅広いユースケースの中から、自社の経営課題解決にマッチするいくつかのユースケースに絞り込み、プロトタイプを開発し、実際の業務で運用します。
PoCを実施することで、コストを抑えながら生成AI活用のインパクトを検証しつつ、見えてきた改善点から本開発の精度を高めることが可能です。
Step4:本開発と運用
4つ目のステップは、本格的な生成AIを活用したシステムの開発と運用、継続的なカイゼンです。
自社独自のデータ基盤の構築・連携や活用シーンに特化したアウトプット精度の改善などを実施し、自社の目的達成に特化した生成AIシステムを開発します。
PoCの結果を踏まえ、本開発を行うユースケースや活用範囲を決定することで、生成AI活用の費用対効果を最大化することが可能です。
また、開発しっぱなしで終わるのではなく、本開発したシステムを運用し上がった成果や改善点、技術進化などを踏まえて、活用方法や内容を継続的にカイゼンしていくことが重要です。
このプロセスを通じ、生成AI活用のポテンシャルを最大限に発揮することで、業務生産性や顧客への提供価値の観点から、大きな競争優位性を構築することに繋がります。
AI・ChatGPT活用の個別無料相談会実施中
AI総研では、AI・ChatGPT活用の個別無料相談会を実施しています。
各社様のご要望に合わせ、最新の市場動向や具体的な活用アイデアなどを、個別のオンライン個別のオンラインMTGにて、無料でご紹介させていただきます。
以下のようなお悩みをお持ちのご担当者様は、この機会にぜひお申込みください。
- 興味はあるが、そもそも活用するかどうか迷っている
- 自社に合った活用方法へのアドバイスが欲しい
- 自社の企画の参考になる活用事例を知りたい
- どのように活用を進めていけば良いか分からず困っている